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b Département de psychoéducation et de psychologie Université du Québec en Outaouais, C.P. 1250, Succ. Hull, Gatineau, QC, Canada J8X 3X7
a r t i c l e i n f o

Article history:

Received 5 March 2012

Received in revised form

23 June 2012

Accepted 13 August 2012
Available online 20 August 2012

Keywords:

Facial expression recognition

Facial features

Visual mechanisms

Classification image technique
32/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.neuropsychologia.2012.08

esponding author. Tel.: þ1 514 343 7550; fax

ail address: frederic.gosselin@umontreal.ca (F
a b s t r a c t

Facial expressions are one of the most important ways to communicate our emotional state. In popular

culture and in the scientific literature on face processing, the eye area is often conceived as a very

important – if not the most important – cue for the recognition of facial expressions. In support of this,

an underutilization of the eye area is often observed in clinical populations with a deficit in the

recognition of facial expressions of emotions. Here, we used the Bubbles technique to verify which

facial cue is the most important when it comes to discriminating between eight static and dynamic

facial expressions (i.e., six basic emotions, pain and a neutral expression). We found that the mouth

area is the most important cue for both static and dynamic facial expressions. We conducted an ideal

observer analysis on the static expressions and determined that the mouth area is the most

informative. However, we found an underutilization of the eye area by human participants in

comparison to the ideal observer. We then demonstrated that the mouth area contains the most

discriminative motions across expressions. We propose that the greater utilization of the mouth area by

the human participants might come from remnants of the strategy the brain has developed with

dynamic stimuli, and/or from a strategy whereby the most informative area is prioritized due to the

limited capacity of the visuo-cognitive system.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Interactions with other individuals are an important part of our
everyday life, and having the skills to adequately transmit our state
of mind and decode that of others is crucial for the success of social
communication. The facial expression of emotions is one of the most
important ways of communicating those states (Mehrabian, 1968),
and the study of the perceptual information available to decode
facial expressions, as well as the actual information used by human
observers to achieve this task, has preoccupied researchers at least
since the publication of Darwin’s seminal book The Expression of

Emotions in Man and Animals (1872). It is now well accepted that the
various facial expressions differ from one another in terms of where
the information is available across the different facial areas (e.g.,
Bassili, 1979; Cunningham, Kleiner, Bülthoff, & Wallraven, 2004;
Ekman, 1982; Hanawalt, 1944; Nummenmaa, 1964; Nusseck,
Cunningham, Wallraven, & Bülthoff, 2008; Plutchik, 1962; Smith,
Cottrell, Gosselin, & Schyns, 2005). However, some areas of the face
may convey more information than others when it comes to
discriminating all emotions or a significant subset of them.
ll rights reserved.
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In popular culture, the eyes are often portrayed as the most
important emotional cue. This is, for instance, reflected in our
metaphorical language: ‘‘The eyes are the window to the soul’’, ‘‘I
could see the fear in his eyes’’, ‘‘His eyes were filled with anger’’,
‘‘There was passion in her eyes’’, ‘‘Love showed in his eyes’’, ‘‘Her
eyes welled with tears’’, and so on. In fact, a considerable part of
the literature that emerged from cognitive science research
suggests that the eyes are particularly important for face recogni-
tion. Research on infant development also suggests that the eye
region is ‘‘special’’ from very early on in life. For example, infants
show a preference for looking at the eye region in comparison to
other facial areas (Hainline, 1978; Haith, Bergman, & Moore,
1977; Maurer, 1985) and prefer to look at faces with direct eye
contact (Farroni, Csibra, Simion, & Johnson, 2002). The existence
of an innate gaze module, dedicated to the task of detecting the
presence of eyes, has even been proposed (Batki, Baron-Cohen,
Wheelwright, Connellan, & Ahluwalia, 2000).

Moreover, research on clinical populations has shown that the
eye region is processed less efficiently or is processed in an
abnormal way in many neurological pathologies leading to social
impairments (e.g., Adolphs et al., 2005; Lee, Gosselin, Wynn, &
Green, 2011; Spezio et al., 2007a; 2007b). One example of this is
the finding that SM, a patient with a bilateral amygdala lesion
suffering from a major deficit at categorizing the expression of
fear, processes eye information less effectively than do control
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subjects (Adolphs et al., 2005). Furthermore, this patient’s perfor-
mance with the expression of fear returns to normal when she is
instructed to look at the eyes. Similarly, schizophrenia patients rely
less on the high spatial frequencies in the eye region than control
participants when categorizing fear (Lee, Gosselin, Wynn, & Green,
2011). Adults with autism, who show a deficit in the categorization
of facial expressions (Humphreys, Minshew, Leonard, & Behrmann,
2007; Harms, Martin, & Wallace, 2010), have also been shown to
process the eye region less efficiently than normal participants
(Baron-Cohen, Wheelwright, & Jolliffe, 1997; Spezio et al., 2007a;
2007b). Acquired prosopagnosic patients, who have been shown to
process the eye region less efficiently than controls (Bukach, Bub,
Gauthier, & Tarr, 2006; Bukach, LeGrand, Kaiser, Bub, & Tanaka,
2008; Caldara et al., 2005; Rossion, Kaiser, Bub, & Tanaka, 2009), also
suffer from a deficit in discriminating facial expressions of emotions
(Humphreys, Avidan, & Behrmann, 2007). Thus, many neuropsycho-
logical phenomena associated with a failure in facial expression
categorization involve an underutilization of the eyes.

From the observations listed above, it is tempting to conclude
that the eyes are more important than any other facial area for the
discrimination of facial emotions. However, the studies that have
directly addressed the question of which facial features are useful
for the discrimination of basic facial expressions of emotions have
led to contradictory results. Some have found that the lower part
of the face was more important than the upper part of the face
(Dunlap, 1927; Ruckmick, 1921) and some have found no greater
importance of one part of the face over another (Baron-Cohen
et al., 1997; Coleman, 1949; Frois-Wittman, 1930). In a related
vein, eye-tracking studies that have examined how ocular fixa-
tions are distributed on faces during the recognition of facial
expressions have found a roughly equal sampling of the mouth
and eye areas (Eisenbarth & Alpers, 2011; Jack et al., 2009).
However, eye fixation patterns are partly dissociable from infor-
mation use (Arizpe, Kravitz, Yovel, & Baker, 2012; Jonides, 1981;
Posner, 1980; see however, Rayner, 1998; Deubel & Schneider,
2003; Godjin & Theeuwes, 2003), and the question of interest
here is what visual information is actually used to discriminate
facial expressions from one another.

Our primary aim here is to discover which facial information is the
most important when it comes to discriminating a significant subset
of facial emotions. The data that will be analyzed in this paper is part
of a larger project in which we examined many dimensions of the
visual information extraction strategies employed for the discrimina-
tion of static and dynamic facial expression of emotions using the
Bubbles technique (Gosselin & Schyns, 2001). Here, we will focus on
the spatial and the temporal dimensions of the data. Our secondary
aim is to examine if the use of information varies between static and
dynamic stimuli. We will also present a novel analysis of the data
from Smith et al. (2005), who have used static Bubbles to verify
which facial information is the most important to discriminate each

expression of basic emotion from one another.
2. Methods

2.1. Participants

Forty-one Caucasian participants (14 males; 24.2 years old on average) with

normal or corrected-to-normal visual acuity took part in the experiment with

static stimuli, and 59 different participants (30 males; 23.9 years old on average)

took part in the experiment with dynamic stimuli. All procedures were carried out

with the ethics approval of the Université de Montréal.

2.2. Materials and stimuli

Stimuli were displayed on a calibrated high-resolution CRT monitor with a

refresh rate of 60 Hz. The experimental program was written in Matlab, using
functions from the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The

stimulus width subtended 5.72 degrees of visual angle.

The stimuli were created using a validated database composed of highly

recognizable pictures and videos of 10 Caucasian actors’ faces spontaneously

expressing one of eight states (i.e., anger, disgust, fear, happy, pain, sad, surprise,

and a neutral expression; Roy et al., 2007). The database as well as normative data

are available at the following address: http://mapageweb.umontreal.ca/gosselif/

STOIC.rar. The videos consisted of 15 frames, displayed at a rate of 30 Hz, starting

with a neutral expression that naturally deployed into one of the eight expressions

mentioned above and ending with the apex of the expression. They lasted a total

duration of 500 ms. The static stimuli consisted of the apex of the facial

expressions mentioned above, displayed for a duration of 500 ms. All the stimuli

were gray-scaled and their luminance was normalized. To minimize the head

movements that occurred while the actors made the facial expressions, the stimuli

were also spatially aligned frame by frame to ensure that the eyes and nose were

located at about the same spatial coordinates across frames and stimuli.

To reveal the visual information useful for the discrimination of facial

expressions, we used the Bubbles technique. The Bubbles technique consists of

randomly sampling the visual information contained in a stimulus, such that, on

each trial, a different subset of this information is rendered available to the

participant. The performance of the participant with these subsets of information

indicates which parts of the stimulus are most useful in performing the task. Here,

we sampled the static expressions on the space (i.e., x, y coordinates of the face)

and on the spatial frequency dimensions; and we sampled the dynamic expres-

sions on the space, spatial frequency and time dimensions.

For each trial, the creation of a bubblized stimulus went as follows: first, the

image of a facial expression was decomposed into five spatial frequency bands

(128–64, 64–32, 32–16, 16–8, 8–4 cycles/image, or 86–43, 43–21.5, 21.5–10.8,

10.8–5.4, 5.4–2.7 cycles/face; the remaining low frequency bandwidth served as a

constant background; see Fig. 1a, top row) using the Laplacian pyramid (Burt &

Adelson, 1983). With dynamic stimuli, the spatial frequency decomposition was

performed on each frame of the videos (see Fig. 1b, top row, for an example with

the third spatial frequency band). Then, independently for each spatial frequency

band, the bubbles’ locations (i.e., a bubble is a Gaussian aperture through which

the information is visible) were randomly selected (see Fig. 1a and b, middle row).

On the space dimension, the size of the bubbles (FWHM: 14.1, 28.3, 56.5, 113.0,

and 226.1 pixels) was adjusted as a function of the frequency band so that each

bubble revealed 1.5 cycles of spatial information. Because the size of the bubbles

increased as the spatial scale became coarser, the number of bubbles differed

across scales to keep the size of the sampled area constant across frequency bands.

The size of the bubbles also varied as a function of spatial frequency on the time

dimension (i.e., with dynamic bubbles), such that their duration increased as the

spatial frequency band increased (FWHM: 14.1, 28.3, 56.5, 113.0, and 226.1 pixels

on the space dimension and 7.3, 6.1, 5.1, 4.2 and 3.5 frames on the time

dimension). This was done to take into account the faster processing of lower

spatial frequencies (Hughes, Fendrich, & Reuter-Lorenz, 1990; Parker, Lishman, &

Hughues, 1992). A pointwise multiplication was then performed between the

bubbles’ masks and the filtered images (see Fig. 1a and b, bottom row). Finally, the

information revealed by the bubbles was fused across the five frequency bands to

produce an experimental stimulus (Fig. 1a, bottom row, rightward picture).

2.3. Procedure

Each participant completed 4000 trials divided into experimental sessions

comprising 160 trials each. On each trial, the sequence of events went as follows: a

fixation point was first displayed in the center of the screen for 200 ms and was

immediately replaced by the stimulus (i.e., a bubblized image or video of a facial

expression). The stimulus was displayed for 500 ms and was then replaced by a

homogenous grey screen that remained visible until the participant responded. The

participant was instructed to press on the keyboard key that corresponded to the

facial expression he had perceived. Responses were not restricted by time pressure.

No accuracy feedback was provided. The accuracy was maintained at 56% correct on

average (i.e., halfway between chance and perfect performance) across all expressions

by adjusting the total number of bubbles on the stimulus on a trial-by-trial basis

using QUEST (Watson & Pelli, 1983). We used a constant number of bubbles across

expressions because we did not want this parameter to become a cue for the

recognition. A threshold of 56% correct (midway between chance and perfect

performance) was chosen to make sure that the performance would reach neither

ceiling for facial expressions that are easier to recognize, such as happy, nor floor for

facial expressions that are more difficult to recognize, such as fear.
3. Results

3.1. Classification plane and classification volume

A mean of 144.3 bubbles (SD: 119.6) and of 241.3 bubbles (SD:
253.6) were necessary to maintain the average performance at
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Fig. 1. Illustration of the creation of a bubblized stimulus. (a) Procedure with static stimuli. A facial expression image was decomposed into five spatial frequency bands

(top row). Bubbles were then placed at random locations separately for each spatial frequency band (middle row). The information revealed by the bubbles (bottom row)

was then fused across the five frequency bands to produce an experimental stimulus. (b) With dynamic stimuli, the procedure to create a bubblized stimulus was very

similar to the procedure for static stimuli, except that the decomposition into five spatial frequency bands was performed on each frame. Here, we illustrate the procedure

for the third frequency band and the first 10 frames of the video. The same procedure was repeated on each frequency band. Each frame of the video was decomposed into

five frequency bands (top row represents the third frequency band). Bubbles were then placed randomly at different locations and frames, separately for each spatial

frequency band (middle row). The bottom row illustrates the information revealed by the bubbles on each frame.
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56% for the static and the dynamic version of the experiment,
respectively.

The visual information useful in categorizing facial expressions
of emotions was determined using an analysis procedure that
amounts to a multiple linear regression on the bubbles masks
(explanatory variables) and on the participant’s response accu-
racy (predictor variable). In other words, for each participant,
each facial expression, and each spatial frequency band, a
weighted sum of all the bubbles centers was calculated, using
the accuracies transformed into z-score values as weights. This
resulted in 3D volumes (or 4D volumes in the dynamic version of
the experiment) of regression coefficients that will be referred to
as classification volumes. These classification volumes were then
summed across participants, leading to one classification volume
per expression and per spatial frequency. These classification
volumes were transformed into z-scores. We used the voxels
(i.e., volume elements) outside the face area to calculate the mean
and standard deviation of the distribution of the null hypothesis.
Since we were particularly interested in verifying the location of
the most useful visual information across all facial expressions in
a categorization task, we then summed the classification volumes
across the eight expressions tested and across the five spatial
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frequency bands, and we normalized the resulting classification
volumes by dividing them by the square root of 40 (i.e., 8
expressions�5 spatial frequency bands). We then smoothed the
2D classification volume (or classification planes) using a Gaus-
sian window with a FWHM of 28.3 pixels (equivalent to the
spatial extent of the bubbles that revealed the information at
second finest scale) and the 3D classification volume using a
Gaussian window with a FWHM of 28.3 pixels on the spatial
dimension and of 6.1 frames on the temporal dimension (equiva-
lent to the temporal extent of the bubbles that revealed the
information at second finest scale); and we transformed one last
time the pixels (or voxels) of the classification plane (or volume)
into z-scores, using the pixels (or voxels) outside the face area to
calculate the mean and standard deviation of the distribution of
the null hypothesis. In order to determine if the facial information
significantly correlated with accuracy, we applied the Pixel test
(po0.05, Zcrit¼3.76 and 4.31 for the classification plane and
classification volume, respectively) to the classification images
and movies. The statistical threshold provided by this test
corrects for multiple comparisons while taking the spatial corre-
lation inherent to structured images into account (Chauvin,
Worsley, Schyns, Arguin, & Gosselin, 2005). The classification
plane and classification volume are displayed in Fig. 2a and b,
respectively. The non-significant pixels are depicted in gray, and
the different colors indicate the z-score values of the significant
pixels (and voxels).

A quick visual inspection of the classification plane and volume
reveals that the eye and mouth regions are the most important facial
areas. To further characterize the information available in the
classification plane and classification volume in terms of facial
features, we conducted a region-of interest (i.e., ROI) analysis on
0-33

168-200

34-67 68-100

201-233 234-267

334-367 368-400 401-433

Fig. 2. Classification plane obtained with the static stimuli (a) and classification vo

significantly correlated with accuracy. (For interpretation of the references to color in
six facial areas (i.e., the eyes, the eyebrows, the frown lines, the nose,
the nasolabial folds, and the mouth; see inset in Fig. 3). In the first
part of this analysis, we were interested in verifying the relative
importance of the different face areas and in comparing the result
obtained for dynamic and static stimuli. We therefore collapsed the
classification volume on the temporal dimension.

3.2. ROI analysis without the time dimension

We kept only the portion of the static and dynamic ‘‘classifica-
tion planes’’ that corresponded to the highest 5% regression
coefficients. This ensured that the same number of pixels was
considered for the ROI analysis on the data from the static and the
dynamic version of the experiment. We then calculated, separately
for the static and the dynamic classification planes, the proportion
of the total number of these pixels that fall on each facial feature,
and divided this proportion by the total number of pixels in that
feature, thus normalizing the proportion for feature size (e.g.,
Gibson, Lazareva, Gosselin, Schyns, & Wasserman, 2007). The
results of this analysis are summarized in Fig. 3. For both static
and dynamic facial expressions of emotions, the mouth area is
more important than the eye area (i.e., 8.56 and 15.51 times more
important on average for the static and the dynamic stimuli,
respectively). To make sure that the average classification planes
reflected the strategy of most participants rather than only a few
participants, we created 1000 classification planes using random
subsamples of 20 participants (results are robust to changes in the
size of this subsample of participants). We calculated the average
of the z-score values for the mouth area and for the eye area, and
we calculated the ratio of these two values (mouth/eyes). The
ratios were higher than one (i.e., mouth4eyes) on 99.6% of the
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Fig. 4. ROI analysis across time on the classification volume. The figure indicates,

for each time frame, the proportion of significant pixels on each ROI.

C. Blais et al. / Neuropsychologia 50 (2012) 2830–28382834
dynamic classification images and on 100% of the static classifica-
tion images. We also verified that this result was not an artifact of
the smoothing applied on our classification planes by performing
the same analysis on unsmoothed classification planes. The mouth
remained more important than the eye area on 96.7% of the
dynamic classification planes and on 100% of the static classifica-
tion planes.

3.3. ROI analysis with the time dimension

We then examined in what order the different facial features
became useful for the categorization of dynamic facial expres-
sions. We calculated for each frame of the 3D classification
volume, the proportion of the total number of significant pixels
(i.e., as determined with the Pixel test) that fell on each facial
feature across the frames and divided this proportion by the total
number of pixels in that feature. The relative importance of each
facial feature across time is displayed in Fig. 4. The mouth is the
first area to become useful for the discrimination of facial
expressions, around 100 ms after stimulus onset. The left eye
and the eyebrows are the second areas to become useful (around
234 ms after stimulus onset), followed by the frown lines and the
nasolabial folds (around 368 ms after stimulus onset). Except for a
short period of time between 268 and 333 ms, the mouth remains
the most useful area throughout the stimulus presentation. We
also looked at the relative importance of the mouth and the
‘‘metropolitan’’ eye area by grouping the eyes, the frown lines,
and the eyebrows (see the dotted black curve in Fig. 4). Again,
except for a short period of time around 300 ms after stimulus
onset, the mouth remains the most useful area throughout
stimulus duration.

Thus, in both ROI analyses, the mouth is the most useful area
when it comes to discriminating facial expressions of emotions. It
is conceivable that the mouth was particularly informative in the
set of stimuli we used, or that the parameters used in our
experiments affected the participants’ strategy, and that our
results overestimate the importance of the mouth area. To test
this, we reanalyzed the data of Smith et al. (2005) with the same
procedure as described above. These authors also applied the
Bubbles method (i.e., the same version we used in our study with
the static stimuli) in a discrimination task of facial expressions of
emotions. However, they used a completely different set of
stimuli (the California Facial Expressions – i.e., CAFE – database;
Dailey, Cottrell, & Reilly, 2001) with a slightly different subset of
facial expressions (i.e., they did not use the pain expression).
Moreover, they adjusted the performance differently from what
we did. They manipulated the number of bubbles such that
accuracy was approximately equal (i.e., accuracy threshold of
75%) across the seven facial expressions. Here, we decided to
allow accuracy to vary across the expressions to prevent the
number of bubbles from becoming a cue for discriminating
between facial expressions of emotions (i.e., the average accuracy
was not controlled separately for each expression, but was
instead controlled across expressions; the accuracy threshold
was of 56%). Another difference between the experiment of
Smith et al. (2005) and ours was the stimulus duration. They
displayed the stimuli until the participant’s response, whereas we
displayed the stimuli for 500 ms. Because the aim of Smith et al.
(2005) was to verify which information was useful in categorizing
each facial expression, they analyzed each expression and spatial
scale independently. Here, we re-analyzed their data to reveal the
information that was useful across all expressions irrespective of
spatial scale.

3.4. Reanalysis of Smith et al. (2005)

Similarly to our study, their experiment provided one classi-
fication plane per expression and per frequency band. We there-
fore added the five frequency bands and the seven expressions of
their classification planes, we smoothed the resulting classifica-
tion plane using a Gaussian window with a FWHM of 28.3 pixels,
and we z-scored it using the pixels outside the face area to
calculate the mean and standard deviation of the distribution of
the null hypothesis. The resulting classification plane is presented
in Fig. 5. The pixels with the highest regression coefficients (i.e.,
we kept the same number of pixels as displayed in Fig. 2a) are
displayed in colors. These results, which are quite consistent with
our own, clearly show that the mouth area is favored over the eye
area during the categorization of facial expressions.
4. Discussion

We examined what visual information is most useful in
discriminating the basic facial emotions and pain from one
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another using the Bubbles technique. We observed a clear pre-
ference for the mouth for both static and dynamic stimuli. The
results obtained for the discrimination of dynamic facial expres-
sions also show that the mouth remains the most useful area
throughout the stimulus duration. We also replicated our finding
in a re-analysis of the data from Smith et al. (2005) despite very
different experimental parameters: the stimulus set used, the
variance of performance across expressions (i.e., constant in the
experiment from Smith and colleagues, varying in our experi-
ments), and the stimulus duration.

Our findings may appear inconsistent with the eye movement
literature, which shows a roughly equal sampling of the eye and
mouth areas (e.g., Eisenbarth & Alpers, 2011; Jack et al., 2009), but
they need not be. There is a partial dissociation between where
the eye fixations land and what visual information is actually
processed (Arizpe et al., 2012; Jonides, 1981; Posner, 1980; see
however, Rayner, 1998; Deubel & Schneider, 2003; Godjin &
Theeuwes, 2003). The eyes are smaller than the mouth, and are
therefore represented by higher spatial frequencies. They may
thus need to be processed within the fovea, since the high density
of cones found in this area of the retina makes it more suitable for
processing high spatial frequencies. The mouth, which is repre-
sented by lower spatial frequencies, may be adequately processed
in parafoveal regions and may thus also be processed while the
eye fixations land close to the eye area. In other words, when the
eye fixations fall on the eye area, both the eye and the mouth area
may be processed, whereas when the eye fixations fall on the
mouth area, only the mouth area may be processed. This could
explain why the proportion of fixations falling on the eye and on
the mouth area is similar even if the mouth area is more useful
than the eye area for the recognition of facial expressions.

Why is the mouth area more important than any other facial
area for the accurate categorization of facial expressions of basic
emotions? One conceivable explanation for this finding is that the
mouth is the most informative area of the face (i.e., it contains
more signal). To verify this possibility, we submitted an ideal

observer – a model observer that uses all the available information
optimally – to the same static facial discrimination task as our
human observers (e.g., see Smith et al., 2005). The classification
plane of the model observer reveals which areas of the face are
informative in discriminating the expressions from one another.

4.1. Ideal observer analysis on static facial expressions

On each trial, the model observer was presented with a
stimulus of the experiment that we conducted with the human
observers. The same mask of bubbles was applied to the face and
Gaussian white noise was added to the stimulus in order to keep
the average accuracy at the same level as the one used with the
humans, i.e., 56%. The amount of noise was adjusted on a trial-
by-trial basis using QUEST (Watson & Pelli, 1983). The same mask
of bubbles was also applied to all the other faces of the stimulus
set, and the ideal observer calculated the correlation between the
target stimulus presented and every other face. The facial expres-
sion of the face that had the highest correlation with the target
stimulus was the model’s response. We then computed the
classification plane of the ideal observer using the same proce-
dure as explained in Section 3 (see Fig. 6).

The model observer mostly used the mouth and eye areas,
confirming that these face areas are the most informative when it
comes to discriminating the expressions included in our study
from one another. Most importantly, the ideal observer shows
that the mouth area contains more information than the eye area
(see also Fig. 3). This may explain at least in part why this area
was used most by human participants. However, a more rigorous
analysis of the similarities and differences in the visual extraction
strategies of human observers and of the model observer reveals
that the relative utilization of the mouth and the eyes is different
for the ideal observer and for the human participants. Indeed, the
ratio of the proportion of diagnostic pixels (i.e., top 5% pixels) that
fell on the mouth vs. on the eye area was much greater for human
participants (i.e., 8.56 and 15.51 on average for the static and
dynamic stimuli, respectively) than for the ideal observer (i.e.,
3.08). To test if the ratio of the mouth vs. eyes utilization was
statistically significantly higher for the humans than for the ideal
observer, we created 1000 classification planes using random
subsamples of 20 participants (results are robust to changes in
the size of this subsample of participants), and calculated the
ratios of the average of the z-scores in the mouth area and in the
eye area. We compared the ratio found in each of these classifica-
tion planes to the one found for the ideal observer, and performed
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a sign test on the result of this comparison. This analysis indicated
a significant difference between the ratio of the mouth and eyes
utilization for the humans and for the ideal observer (po0.001
for both static and dynamic stimuli). Again, we made sure that
this result was not an artifact of the smoothing of our classifica-
tion planes by repeating the analysis on unsmoothed classifica-
tion planes: A significant difference was again found between the
ratio of the mouth and eyes utilization for the humans and for the
ideal observer (po0.001). Thus, pixel-wise, informativity does
not account entirely for the human preference for the mouth.
What else then could explain this preference?

One possibility comes from the inherently dynamic nature of
facial expressions. It may be the case that the movements of the
mouth contain much more information for the discrimination of
natural facial expressions than the movements of any other facial
area. Moreover, the human brain may have learned to use these
motion cues to discriminate facial expressions and remnants of
this strategy may influence how humans recognize static facial
expressions. To test the first part of this hypothesis, we measured
how the amplitude of the movements in different areas of the
expressive face varies across our dynamic stimuli.
4.2. Motion analysis on the dynamic facial expressions

We first calculated, using a three-step search method (Koga,
Linuma, Hirano, Iijima, & Ishiguro, 1981) with a spatial granular-
ity of 10�10 pixels, the surface-based motion occurring between
each step of two frames in our dynamic faces (the results of this
analysis are robust to parameter changes). This resulted in one
motion vector for each 10�10 area of our stimuli. We then
calculated the amplitude of those vectors and, finally, we calcu-
lated the variance of these amplitudes for each area across all the
stimuli and averaged these values across all frames (see Fig. 7).
The variance values were transformed into z-scores using the
average and the standard deviations of the variances across all the
facial areas. The more variance there is in an area across all
stimuli, the more this area gives information about the expression
portrayed. It is clear, from this analysis, that the mouth area is by
far the most informative for the categorization of all the
expressions.

Therefore, the greater utilization of the mouth area in compar-
ison to the eye area by the human observers could be explained in
part by the mouth area conveying most of the movement
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reader is referred to the web version of this article.)
information in dynamic stimuli. As proposed above, it is
possible that the brain has elaborated a strategy over the course
of its development that is suitable for dynamic expressions,
since they appear in an ecological environment. Whenever the
brain is exposed to a facial expression categorization task,
a similar strategy is used no matter the state – static or dynamic
– of the expressions. We are not suggesting that facial expression
recognition relies only on motion cues, but that the importance
of movement for the memory representations of facial expres-
sions of emotions should not be underestimated. If this hypoth-
esis is true, the facial expressions would benefit from being
represented by neurons that integrate both the movement and
the shape of an object. Interestingly, the superior temporal sulcus
(STS), a region of the cortex that has been proposed as a site of
integration for these two kinds of information (Vaina, Solomon,
Chowdhury, Sinha, & Beliveau, 2001), is involved in the proces-
sing of both static (Furl, van Rijsbergen, Treves, Friston, & Dolan,
2007; Haxby, Hoffman, & Gobbini, 2000; Narumoto, Okada,
Sadato, Fukui, & Yonekura, 2001; Pessoa & Padmala, 2007;
Tsuchiya, Kawasaki, Oya, Howard, & Adolphs, 2008) and dynamic
facial expressions (Ishai, 2008; Said, Moore, Engell, Todorov, &
Haxby, 2010).
4.3. A strategy for a system with a limited capacity

Another potential explanation for the greater utilization of the
mouth area by the human observers in comparison to the ideal
observer may be the limited capacity of the human visual system
(Levin & Simons, 1997; Simons & Rensink, 2005). Indeed, with
limited capacity, a strategy whereby the most informative area is
favored at the expense of other areas may be selected. The more
resources are available, the more the other areas – for instance
the second most informative area, the eyes – receive processing.
This could also explain, at least in part, why an underutilization of
the eye area has often been reported in clinical populations that
show a deficit in facial expression recognition. Patients suffering
from a brain lesion or from brain dysfunction related to facial
expression recognition most likely have less visual resources to
devote to facial expression discrimination than does the healthy
population. They could have just enough resources to process the
mouth but not the mouth and the eyes. Since the mouth is very
informative, the patients are capable of performing the task.
However, since the eyes also convey crucial information, they
are impaired compared to healthy individuals. This last proposi-
tion is congruent with the relative difficulty of revealing a deficit
in basic emotion recognition in the autistic population (Adolphs,
Sears, & Piven, 2001; Baron-Cohen et al., 1997; Grossman, Klin,
Carter, & Volkmar, 2000; Ogai et al., 2003; Ozonoff, Pennington, &
Rogers, 1990; Prior, Dahlstrom, & Squires, 1990; Spezio et al.,
2007a,b; Teunisse & de Gelder, 1994; Volkmar, Sparrow, Rende, &
Cohen, 1989) and, therefore, the need to use very sensitive
tasks—for instance the facial expression megamix (Humphreys,
Minshew, Leonard, & Behrmann, 2007). Interestingly, this popula-
tion has been shown to underutilize the eye area compared to
healthy individuals and to rely more on the mouth area during
the processing of the facial expression of basic emotions (Spezio
et al., 2007a; 2007b).

Of course, the two explanations proposed above, in Sections
4.2 and 4.3, are speculative and more research will be needed to
understand why the mouth area is so important for the recogni-
tion of the facial expression of basic emotions. It will also be
important to use techniques other than Bubbles because each
technique employed to probe the use of visual information may
interact with this use of information.
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4.4. Conclusion

Even if our results show that humans use the mouth area more
than the eye area to discriminate the basic facial expressions from
one another, the importance of the eye area should not be
underestimated. Our participants effectively used the eye area,
though less so than the mouth area. In fact, the eye area is the
most important visual cue for the recognition of fear (Adolph
et al., 2005; Smith et al., 2005; Gosselin, Spezio, Tranel, & Adolphs,
2011). Tasks using composite facial expressions (e.g., smiling
mouth with angry eyes) show that the top and the bottom parts
of facial expressions interact to create the final percept of the
facial emotion. This is consistent with our finding that both the
eye and the mouth areas are useful for the recognition of facial
expressions. Moreover, research suggests that the eye area
becomes more important when recognizing complex mental
states (Baron-Cohen et al., 1997). Thus, our aim here is not to
negate the importance of the eye area in the field of Social
Neuroscience but, rather, to rehabilitate the importance of the
mouth area for the recognition of facial expressions.
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